At Qovery, we're using Rust for 10+ projects. If you are familiar with Rust, you know how painful it is to release a binary for multiple architectures. Even if the toolchain natively supports it.
Once you’ve used GoReleaser, it’s hard to go back. I looked at Rust alternatives but unfortunately didn’t find one with the expected level of features. This is why I tried to use GoReleaser with Rust and naïvely thought it would be as simple as go, as I knew Rust was also made to be multi-architecture. Unfortunately, the reality is more complex than I expected. I found several tutorials, blog posts, and discussions around it, but nothing ready to set up in 5 min.
This is why I started to make a template to build multi-architecture binaries on Rust, with GitHub Action and GoReleaser. The goal is to build binaries for:
Linux (Aarch64 & x86_64)
MacOs (Aarch64 & x86_64)
Windows (x86_64)
Rust project
Before digging into GitHub action, I'm using a fresh, newly created Git repository, create a Rust hello world (example), and move the source into the repository:
git clone [email protected]:/.git cargo new example mv example/* . rmdir example
The Cargo.toml can be tuned to optimize the binary size on the release build:
[package] name = "example" version = "0.1.0" edition = "2021"
First, create a DockerHub token to pull (and avoid access being denied) a MacOS image containing the required libs for cross-compilation (thanks a lot to this project for the work).
Now that I have a Rust code example, I’m using a GitHub workflow as follows (.github/workflows/release.yaml):
on: # Indicates I want to run this workflow on all branches, PR, and tags push: branches: ["**"] tags: ["*"] pull_request: branches: [ "main" ]
env: # Define the rust version to use RUST_VERSION: 1.72.1 # Rust build arguments BUILD_ARGS: "--release --all-features" # The binary name BIN_NAME: "example" # Docker token required to pull images from DockerHub DOCKER_LOGIN: ${{ secrets.DOCKER_LOGIN }} DOCKER_TOKEN: ${{ secrets.DOCKER_TOKEN }}
jobs: build: name: Build - ${{ matrix.platform.name }} # By default, runs on Ubuntu, otherwise, override with the desired os runs-on: ${{ matrix.platform.os || 'ubuntu-22.04' }} strategy: matrix: # Set platforms you want to build your binaries on platform: # Linux # The name is used for pretty print - name: Linux x86_64 # The used Rust target architecture target: x86_64-unknown-linux-gnu - name: Linux aarch64 target: aarch64-unknown-linux-gnu
# Mac OS - name: MacOS x86_64 target: x86_64-apple-darwin - name: MacOS aarch64 target: aarch64-apple-darwin
# Windows - name: Windows x86_64 # Use another GitHub action OS os: windows-latest target: x86_64-pc-windows-msvc
# Linux & Windows - name: Install rust toolchain if: ${{ !contains(matrix.platform.target, 'apple') }} uses: actions-rs/toolchain@v1 with: # We setup Rust toolchain and the desired target profile: minimal toolchain: "${{ env.RUST_VERSION }}" override: true target: ${{ matrix.platform.target }} components: rustfmt, clippy - name: Build ${{ matrix.platform.name }} binary if: ${{ !contains(matrix.platform.target, 'apple') }} uses: actions-rs/cargo@v1 # We use cross-rs if not running on x86_64 architecture on Linux with: command: build use-cross: ${{ !contains(matrix.platform.target, 'x86_64') }} args: ${{ env.BUILD_ARGS }} --target ${{ matrix.platform.target }}
# Mac OS - name: Login to DockerHub if: contains(matrix.platform.target, 'apple') # We log on DockerHub uses: docker/login-action@v3 with: username: ${{ env.DOCKER_LOGIN }} password: ${{ env.DOCKER_TOKEN }} - name: Build ${{ matrix.platform.name }} binary if: contains(matrix.platform.target, 'apple') # We use a dedicated Rust image containing required Apple libraries to cross-compile on multiple archs run: | docker run --rm --volume "${PWD}":/root/src --workdir /root/src joseluisq/rust-linux-darwin-builder:$RUST_VERSION \ sh -c "CC=o64-clang CXX=o64-clang++ cargo build $BUILD_ARGS --target ${{ matrix.platform.target }}"
- name: Store artifact uses: actions/upload-artifact@v3 with: # Finally, we store the binary as GitHub artifact for later usage name: ${{ matrix.platform.target }}-${{ env.BIN_NAME }} path: target/${{ matrix.platform.target }}/release/${{ env.BIN_NAME }}${{ contains(matrix.platform.target, 'windows') && '.exe' || '' }} retention-days: 1
release: name: Release needs: [build] # We run the release job only if a tag starts with 'v' letter if: startsWith( github.ref, 'refs/tags/v' ) runs-on: ubuntu-22.04 steps: - name: Checkout Git repo uses: actions/checkout@v3
# Download all artifacts - uses: actions/download-artifact@v3 with: path: artifacts
# Goreleaser - name: Set up Go uses: actions/setup-go@v4 - name: Run GoReleaser uses: goreleaser/goreleaser-action@v5 with: distribution: goreleaser version: latest # Run goreleaser and ignore non-committed files (downloaded artifacts) args: release --clean --skip=validate env: GITHUB_TOKEN: ${{ secrets.GH_TOKEN_RUST_CROSS }}
Goreleaser
Now, the setup is made; the last part is Goreleaser. As you certainly understand, we first build binaries, then use GoReleaser to perform the packaging and release. As GoReleaser is not able to build Rust code and requires to build something, we have to create an empty Go code and build it (goreleaser.go):
package main func main() { }
Then, replace the generated binaries with the Rust ones with a hook calling a shell script (.goreleaser_hook.sh):
#!/usr/bin/env bash
go_arch=$1 go_os=$2 project_name=$3
# Make Go -> Rust arch/os mapping case $go_arch in amd64) rust_arch='x86_64' ;; arm64) rust_arch='aarch64' ;; *) echo "unknown arch: $go_arch" && exit 1 ;; esac case $go_os in linux) rust_os='linux' ;; darwin) rust_os='apple-darwin' ;; windows) rust_os='windows' ;; *) echo "unknown os: $go_os" && exit 1 ;; esac
# Find artifacts and uncompress in the corresponding directory find artifacts -type f -name "*${rust_arch}*${rust_os}*" -exec unzip -d dist/${project_name}_${go_os}_${go_arch} {} \;
To finish, we set the GoReleaser configuration to the same architectures:
project_name: example builds: - main: goreleaser.go goos: - linux - darwin - windows goarch: - amd64 - arm64 binary: example ignore: - goos: windows goarch: arm64 hooks: post: - ./.goreleaser_hook.sh {{ .Arch }} {{ .Os }} {{ .ProjectName }} checksum: name_template: "checksums.txt" changelog: sort: asc filters: exclude: - "^docs:" - "^test:"
Now, push the code to the repository. Create and push a tag, and you'll see your GitHub Action processing:
You can admire the result in the Release tab when everything is finished.
As you can see, building a hello world with cross-compilation takes a longer time (Mac OS and Linux aarch64) than if you would build directly on the target architecture and operating system (Linux and Windows x86_64).
It’s up to you to find a good balance between easy repeatability and speed, depending on your needs.
Bonus
To give you a concrete example of how GoReleaser is powerful on the packaging part, here is a configuration example of how to let it manage the HomeBrew repository. Append this configuration to your .goreleaser.yaml file:
Combining GoReleaser, Rust, and GitHub Action makes multi-architecture compilation simpler. It still requires some work, so we have made a template to clone/fork and save time. We hope this will bring value to the beloved Rust and GoReleaser community. We made this because we love Rust at Qovery and want Rust to be easily adopted :)
The 10 Best Octopus Deploy Alternatives for Modern DevOps
Explore the top 10 Octopus Deploy alternatives for modern DevOps. Find the best GitOps and cloud-native Kubernetes delivery platforms.
Mélanie Dallé
Senior Marketing Manager
AWS
Cloud
Business
8
minutes
November 13, 2025
6 Best AWS Deployment Options to Consider
Deploying on AWS efficiently is key. See the updated guide on the best AWS deployment options, covering new features and services.
Morgan Perry
Co-founder
Cloud
Kubernetes
minutes
November 6, 2025
The High Cost of Vendor Lock-In in Cloud Computing and How to Avoid it
Cloud vendor lock-in threatens agility and raises costs. Discover the high price of proprietary services, egress fees, and technical entrenchment, plus the strategic roadmap to escape. Learn how embracing open standards, Kubernetes, and an exit strategy from day one ensures long-term flexibility and control.
Mélanie Dallé
Senior Marketing Manager
DevOps
minutes
October 27, 2025
The Top 10 Porter Alternatives: Finding a More Flexible DevOps Platform
Looking for a Porter alternative? Discover why Qovery stands out as the #1 choice. Compare features, pros, and cons of the top 10 platforms to simplify your deployment strategy and empower your team.
Mélanie Dallé
Senior Marketing Manager
AWS
Deployment
minutes
October 23, 2025
AWS App Runner Alternatives: Top 10 Choices for Effortless Container Deployment
AWS App Runner limits control and locks you into AWS. See the top 10 alternatives, including Qovery, to gain crucial customization, cost efficiency, and multi-cloud flexibility for containerized application deployment.
Mélanie Dallé
Senior Marketing Manager
Kubernetes
minutes
October 23, 2025
Kubernetes Management: Best Practices & Tools for Managing Clusters and Optimizing Costs
Master Kubernetes management and cut costs with essential best practices and tools. Learn about security, reliability, autoscaling, GitOps, and FinOps to simplify cluster operations and optimize cloud spending.
Mélanie Dallé
Senior Marketing Manager
AWS
GCP
Azure
Cloud
Business
10
minutes
October 23, 2025
10 Best AWS Elastic Beanstalk Alternatives
AWS Elastic Beanstalk is often rigid and slow. This guide details the top 10 Elastic Beanstalk alternatives—including Heroku, Azure App Service, and Qovery—comparing the pros, cons, and ideal use cases for achieving superior flexibility, faster deployments, and better cost control.
Morgan Perry
Co-founder
Kubernetes
DevOps
7
minutes
October 23, 2025
Kubernetes Cloud Migration Strategy: Master the Shift, Skip the Disaster
Master your Kubernetes migration strategy with this expert guide. Learn the critical planning phases, mitigate major risks (data, security, dependencies), and see how Qovery simplifies automation and compliance for a fast, successful, and reliable transition.