At Qovery, we're using Rust for 10+ projects. If you are familiar with Rust, you know how painful it is to release a binary for multiple architectures. Even if the toolchain natively supports it.
Once you’ve used GoReleaser, it’s hard to go back. I looked at Rust alternatives but unfortunately didn’t find one with the expected level of features. This is why I tried to use GoReleaser with Rust and naïvely thought it would be as simple as go, as I knew Rust was also made to be multi-architecture. Unfortunately, the reality is more complex than I expected. I found several tutorials, blog posts, and discussions around it, but nothing ready to set up in 5 min.
This is why I started to make a template to build multi-architecture binaries on Rust, with GitHub Action and GoReleaser. The goal is to build binaries for:
Linux (Aarch64 & x86_64)
MacOs (Aarch64 & x86_64)
Windows (x86_64)
Rust project
Before digging into GitHub action, I'm using a fresh, newly created Git repository, create a Rust hello world (example), and move the source into the repository:
git clone [email protected]:/.git cargo new example mv example/* . rmdir example
The Cargo.toml can be tuned to optimize the binary size on the release build:
[package] name = "example" version = "0.1.0" edition = "2021"
First, create a DockerHub token to pull (and avoid access being denied) a MacOS image containing the required libs for cross-compilation (thanks a lot to this project for the work).
Now that I have a Rust code example, I’m using a GitHub workflow as follows (.github/workflows/release.yaml):
on: # Indicates I want to run this workflow on all branches, PR, and tags push: branches: ["**"] tags: ["*"] pull_request: branches: [ "main" ]
env: # Define the rust version to use RUST_VERSION: 1.72.1 # Rust build arguments BUILD_ARGS: "--release --all-features" # The binary name BIN_NAME: "example" # Docker token required to pull images from DockerHub DOCKER_LOGIN: ${{ secrets.DOCKER_LOGIN }} DOCKER_TOKEN: ${{ secrets.DOCKER_TOKEN }}
jobs: build: name: Build - ${{ matrix.platform.name }} # By default, runs on Ubuntu, otherwise, override with the desired os runs-on: ${{ matrix.platform.os || 'ubuntu-22.04' }} strategy: matrix: # Set platforms you want to build your binaries on platform: # Linux # The name is used for pretty print - name: Linux x86_64 # The used Rust target architecture target: x86_64-unknown-linux-gnu - name: Linux aarch64 target: aarch64-unknown-linux-gnu
# Mac OS - name: MacOS x86_64 target: x86_64-apple-darwin - name: MacOS aarch64 target: aarch64-apple-darwin
# Windows - name: Windows x86_64 # Use another GitHub action OS os: windows-latest target: x86_64-pc-windows-msvc
# Linux & Windows - name: Install rust toolchain if: ${{ !contains(matrix.platform.target, 'apple') }} uses: actions-rs/toolchain@v1 with: # We setup Rust toolchain and the desired target profile: minimal toolchain: "${{ env.RUST_VERSION }}" override: true target: ${{ matrix.platform.target }} components: rustfmt, clippy - name: Build ${{ matrix.platform.name }} binary if: ${{ !contains(matrix.platform.target, 'apple') }} uses: actions-rs/cargo@v1 # We use cross-rs if not running on x86_64 architecture on Linux with: command: build use-cross: ${{ !contains(matrix.platform.target, 'x86_64') }} args: ${{ env.BUILD_ARGS }} --target ${{ matrix.platform.target }}
# Mac OS - name: Login to DockerHub if: contains(matrix.platform.target, 'apple') # We log on DockerHub uses: docker/login-action@v3 with: username: ${{ env.DOCKER_LOGIN }} password: ${{ env.DOCKER_TOKEN }} - name: Build ${{ matrix.platform.name }} binary if: contains(matrix.platform.target, 'apple') # We use a dedicated Rust image containing required Apple libraries to cross-compile on multiple archs run: | docker run --rm --volume "${PWD}":/root/src --workdir /root/src joseluisq/rust-linux-darwin-builder:$RUST_VERSION \ sh -c "CC=o64-clang CXX=o64-clang++ cargo build $BUILD_ARGS --target ${{ matrix.platform.target }}"
- name: Store artifact uses: actions/upload-artifact@v3 with: # Finally, we store the binary as GitHub artifact for later usage name: ${{ matrix.platform.target }}-${{ env.BIN_NAME }} path: target/${{ matrix.platform.target }}/release/${{ env.BIN_NAME }}${{ contains(matrix.platform.target, 'windows') && '.exe' || '' }} retention-days: 1
release: name: Release needs: [build] # We run the release job only if a tag starts with 'v' letter if: startsWith( github.ref, 'refs/tags/v' ) runs-on: ubuntu-22.04 steps: - name: Checkout Git repo uses: actions/checkout@v3
# Download all artifacts - uses: actions/download-artifact@v3 with: path: artifacts
# Goreleaser - name: Set up Go uses: actions/setup-go@v4 - name: Run GoReleaser uses: goreleaser/goreleaser-action@v5 with: distribution: goreleaser version: latest # Run goreleaser and ignore non-committed files (downloaded artifacts) args: release --clean --skip=validate env: GITHUB_TOKEN: ${{ secrets.GH_TOKEN_RUST_CROSS }}
Goreleaser
Now, the setup is made; the last part is Goreleaser. As you certainly understand, we first build binaries, then use GoReleaser to perform the packaging and release. As GoReleaser is not able to build Rust code and requires to build something, we have to create an empty Go code and build it (goreleaser.go):
package main func main() { }
Then, replace the generated binaries with the Rust ones with a hook calling a shell script (.goreleaser_hook.sh):
#!/usr/bin/env bash
go_arch=$1 go_os=$2 project_name=$3
# Make Go -> Rust arch/os mapping case $go_arch in amd64) rust_arch='x86_64' ;; arm64) rust_arch='aarch64' ;; *) echo "unknown arch: $go_arch" && exit 1 ;; esac case $go_os in linux) rust_os='linux' ;; darwin) rust_os='apple-darwin' ;; windows) rust_os='windows' ;; *) echo "unknown os: $go_os" && exit 1 ;; esac
# Find artifacts and uncompress in the corresponding directory find artifacts -type f -name "*${rust_arch}*${rust_os}*" -exec unzip -d dist/${project_name}_${go_os}_${go_arch} {} \;
To finish, we set the GoReleaser configuration to the same architectures:
project_name: example builds: - main: goreleaser.go goos: - linux - darwin - windows goarch: - amd64 - arm64 binary: example ignore: - goos: windows goarch: arm64 hooks: post: - ./.goreleaser_hook.sh {{ .Arch }} {{ .Os }} {{ .ProjectName }} checksum: name_template: "checksums.txt" changelog: sort: asc filters: exclude: - "^docs:" - "^test:"
Now, push the code to the repository. Create and push a tag, and you'll see your GitHub Action processing:
You can admire the result in the Release tab when everything is finished.
As you can see, building a hello world with cross-compilation takes a longer time (Mac OS and Linux aarch64) than if you would build directly on the target architecture and operating system (Linux and Windows x86_64).
It’s up to you to find a good balance between easy repeatability and speed, depending on your needs.
Bonus
To give you a concrete example of how GoReleaser is powerful on the packaging part, here is a configuration example of how to let it manage the HomeBrew repository. Append this configuration to your .goreleaser.yaml file:
Combining GoReleaser, Rust, and GitHub Action makes multi-architecture compilation simpler. It still requires some work, so we have made a template to clone/fork and save time. We hope this will bring value to the beloved Rust and GoReleaser community. We made this because we love Rust at Qovery and want Rust to be easily adopted :)
Alerting with guided troubleshooting in Qovery Observe
Get alerted and fix issues with full context. Qovery Observe notifies you when something goes wrong and guides you straight to the metrics and signals that explain why, all in one place.
Alessandro Carrano
Head of Product
DevOps
Developer Experience
minutes
December 17, 2025
Top 10 Terraform Cloud Alternatives: The DevOps Guide to Escaping "State File Nightmares"
Tired of rising licensing costs and complex state management? Discover the top 10 alternatives to modernize your Infrastructure as Code, empower developers, and regain control of your cloud spend.
Mélanie Dallé
Senior Marketing Manager
DevOps
minutes
December 15, 2025
Top 10 Jenkins Alternatives: The DevOps Guide to Escaping "Plugin Chaos"
Tired of Jenkins maintenance and broken pipelines? Discover the top 10 alternatives to modernize your CI/CD, automate environments, and reduce operational toil.
Mélanie Dallé
Senior Marketing Manager
DevOps
minutes
December 15, 2025
10 DigitalOcean Alternatives for Scaling DevOps Teams
Top DigitalOcean alternatives for scaling teams. Compare Qovery (Multi-cloud automation), AWS, GCP, and Vultr to find the best fit for performance and scale.
Mélanie Dallé
Senior Marketing Manager
DevOps
minutes
December 15, 2025
Top 5 Vercel Alternatives: Escape Cost, Lock-in, and Frontend Constraints
Stop paying Vercel overages and battling lock-in. Compare Qovery (full-stack automation on your cloud), Render, Netlify, and Fly.io to find the best alternative for DevOps and enterprise scaling.
Mélanie Dallé
Senior Marketing Manager
DevOps
minutes
December 15, 2025
Top 8 OrbStack Alternatives: Choosing the Right Tool for DevOps & Production Parity
Top OrbStack alternatives for developers and teams. Compare Qovery, Rancher Desktop, Podman, and Colima to find the best tool for performance, cross-platform stability, and K8s integration.
Mélanie Dallé
Senior Marketing Manager
Heroku
AWS
Cloud Migration
13
minutes
December 14, 2025
How to Migrate from Heroku to AWS: A Strategic Blueprint for Mid-Market Teams
Outgrowing Heroku? Stop the manual DevOps grind. Migrate to AWS in <7 days using AI to generate Terraform, EKS configs, and a seamless developer experience.
Mélanie Dallé
Senior Marketing Manager
DevOps
Platform Engineering
9
minutes
December 14, 2025
10 Best CI/CD Platforms for DevOps Teams: Automate Pipelines at Scale
Stop managing complex YAML and plugin hell. Compare the top 10 CI/CD platforms for DevOps, from Jenkins to Qovery, and learn how to build high-velocity, automated pipelines on your own cloud.