Blog
AWS
Kubernetes
3
minutes

Deploying AI Apps with GPUs on AWS EKS and Karpenter

As AI and machine learning workloads continue to grow in complexity and size, the need for efficient and scalable infrastructure becomes more important than ever. In this tutorial, I will show you how to deploy AI applications on AWS Elastic Kubernetes Service (EKS) with Karpenter from scratch, leveraging GPU resources for high-performance computing. We'll use Qovery, an Internal Developer Platform that simplifies the deployment and management of applications, ensuring developers can focus on building their applications rather than managing infrastructure.
Romaric Philogène
CEO & Co-founder
Summary
Twitter icon
linkedin icon

Why Use AWS EKS with Karpenter

AWS EKS provides a managed Kubernetes service that simplifies running Kubernetes without needing to install, operate, and maintain your own cluster control plane. Combined with Karpenter, an open-source, high-performance Kubernetes cluster autoscaler, you get a flexible and cost-effective solution that can efficiently manage the provisioning and scaling of nodes based on the application's requirements.

Karpenter specifically helps handle variable workloads by provisioning the right resources at the right time, which is ideal for AI applications with sporadic or compute-intensive tasks requiring GPU capabilities. (read this article I wrote to learn more)

Install AWS EKS and Karpenter with Qovery

To begin, you'll need to set up AWS EKS and Karpenter. Qovery integrates seamlessly into your AWS environment, allowing you to set up EKS with Karpenter with just a few clicks:

  1. Create a Qovery account: connect to the Qovery web console.
  2. Create AWS EKS: Add your AWS EKS cluster and choose the region and configure your cluster specifications.
  3. Enable Karpenter: With the cluster ready, install Karpenter directly from the cluster advanced settings. Qovery automates the integration process, ensuring Karpenter aligns with your EKS settings for optimal performance.
Enable Karpenter for AWS EKS Cluster managed by Qovery

Install NVIDIA device plugin on AWS EKS

The NVIDIA device plugin for Kubernetes is an implementation of the Kubernetes device plugin framework that advertises GPUs as available resources to the kubelet.

This plugin is necessary as it helps manage GPU resources available to Kubernetes pods. For that, we will use the official NVIDIA Helm Chart.

Helm Repository: https://nvidia.github.io/k8s-device-plugin
Helm Chart: nvidia-device-plugin
Helm Version: 0.15.0

With Qovery, you simply need to navigate to Organization Settings > Helm Repositories > Click "Add repository"

Add your NVIDIA Helm Repository 1/2

Then register the NVIDIA repository "https://nvidia.github.io/k8s-device-plugin"

Add your NVIDIA Helm Repository 2/2

Then, I recommend creating a "Tooling" project with a "NVIDIA" environment. ⚠️ Select your EKS with Karpenter cluster.

Create your NVIDIA environment on your AWS EKS with Karpenter cluster

Then you can create a Helm service "nvidia device plugin".

Now, you can deploy the "nvidia device plugin" service to install it on your EKS cluster.

Deploy an App Using a GPU

Deploying an AI application that uses a GPU can be streamlined using Qovery's Helm chart capabilities:

  1. Prepare your application with a Dockerfile and Helm chart: Make sure your application is containerized and ready for deployment.
  2. Push your code to a Git repository connected to Qovery.
  3. Use Qovery to deploy your application: Through the Qovery dashboard, set up your application deployment using the Helm chart, which should specify the necessary GPU resources via nodeSelector.
nodeSelector:
karpenter.sh/nodepool: gpu

Bonus: Using Spot Instances

To further optimize costs, use AWS Spot Instances for your GPU workloads. With Qovery, you can enable Spot Instances in the cluster's advanced settings:

  1. Navigate to the cluster advanced settings in Qovery.
  2. Set "aws.karpenter.enable_spot" to "true". Qovery handles the integration seamlessly, providing cost savings while ensuring resource availability for your applications.
Enable spot instances for AWS EKS with Karpenter

Conclusion

By combining AWS EKS with Karpenter and utilizing Qovery for deployment automation, you can streamline the deployment and management of AI applications that require GPU resources. This setup enhances performance and optimizes costs, making it an excellent choice for developers seeking to deploy AI applications at scale efficiently.

Begin deploying your AI apps today with Qovery and unlock the full potential of cloud-native technologies.

Share on :
Twitter icon
linkedin icon
Tired of fighting your Kubernetes platform?
Qovery provides a unified Kubernetes control plane for cluster provisioning, security, and deployments - giving you an enterprise-grade platform without the DIY overhead.
See it in action

Suggested articles

Kubernetes
DevOps
6
 minutes
Top Nutanix Alternatives for Kubernetes Management

Looking for alternatives to Nutanix Kubernetes Platform (NKP)? Compare the top 10 solutions. Review pros and cons to find tools that offer greater flexibility and lower costs.

Mélanie Dallé
Senior Marketing Manager
Kubernetes
DevOps
6
 minutes
Top Mirantis Alternatives That Developers Actually Love

Explore the top 10 alternatives to Mirantis. Compare pros and cons of modern Kubernetes platforms like Qovery, Rancher, and OpenShift to find your best fit.

Mélanie Dallé
Senior Marketing Manager
Kubernetes
DevOps
6
 minutes
Top 10 enterprise Kubernetes cluster management tools in 2026

Compare the best enterprise Kubernetes management tools for 2026. From Qovery and OpenShift to Rafay and Mirantis, discover which platform best suits your multi-cluster strategy.

Mélanie Dallé
Senior Marketing Manager
Kubernetes
DevOps
 minutes
Atmosly Alternatives: The Best Tools for Scaling Teams

Hit the ceiling with Atmosly? Discover the top 10 Kubernetes management alternatives for 2026. From Qovery’s developer-centric platform to Rancher’s operations control, find the right tool to scale your infrastructure.

Mélanie Dallé
Senior Marketing Manager
DevOps
 minutes
10 Best Octopus Deploy Alternatives: Trade Manual Deployment for Full Pipeline Automation

Modernize your pipeline. Explore the top Octopus Deploy alternatives for cloud-native Kubernetes delivery and full GitOps integration.

Mélanie Dallé
Senior Marketing Manager
DevOps
Platform Engineering
Kubernetes
5
 minutes
10 Best Container Management Tools for the Kubernetes Era

Move beyond basic Docker commands. We review the top container management platforms, including Qovery, Rancher, and OpenShift, that tame Kubernetes complexity and streamline your deployment workflows.

Morgan Perry
Co-founder
DevOps
16
 minutes
Enterprise DevOps Automation: Moving from Scripts to Platform Engineering

Stop writing fragile scripts. Discover how top enterprises use Kubernetes Management Platforms to automate governance (Policy-as-Code), scale ephemeral environments, and enforce FinOps with Spot Instances.

Mélanie Dallé
Senior Marketing Manager
DevOps
Kubernetes
 minutes
Top 10 Platform9 Alternatives: Best managed Kubernetes solutions for scale

Need a better way to manage on-prem Kubernetes? Review 10 alternatives to Platform9, categorized by "Infrastructure Ops" (Rancher) vs. "Developer Experience" (Qovery).

Mélanie Dallé
Senior Marketing Manager

It’s time to change
the way you manage K8s

Turn Kubernetes into your strategic advantage with Qovery, automating the heavy lifting while you stay in control.